Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor.
نویسندگان
چکیده
In plants, betaine is synthesized upon abiotic stress via choline oxidation, in which choline monooxygenase (CMO) is a key enzyme. Although it had been thought that betaine synthesis is well regulated to protect abiotic stress, it is shown here that an exogenous supply of precursors such as choline, serine, and glycine in the betaine-accumulating plant Amaranthus tricolor further enhances the accumulation of betaine under salt stress, but not under normal conditions. Addition of isonicotinic acid hydrazide, an inhibitor of glycine decarboxylase, inhibited the salinity-induced accumulation of betaine. Salt-induced accumulation of A. tricolor CMO (AmCMO) and betaine was much slower in roots than in leaves, and a transient accumulation of proline was observed in the roots. Antisense expression of AmCMO mRNA suppressed the salt-induced accumulation of AmCMO and betaine, but increased the level of choline approximately 2- 3-fold. This indicates that betaine synthesis is highly regulated by AmCMO expression. The genomic DNA, including the upstream region (1.6 kbp), of AmCMO was isolated. Deletion analysis of the AmCMO promoter region revealed that the 410 bp fragment upstream of the translation start codon contains the sequence responsive to salt stress. These data reveal that the promoter sequence of CMO, in addition to precursor supply, is important for the accumulation of betaine in the betaine-accumulating plant A. tricolor.
منابع مشابه
Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L.
Glycinebetaine (betaine) highly accumulates as a compatible solute in certain plants and has been considered to play a role in the protection from salt stress. The betaine biosynthesis pathway of betaine-accumulating plants involves choline monooxygenase (CMO) as the key enzyme and phosphoethanolamine N-methyltransferase (PEAMT), which require S-adenosyl-L-methionine (SAM) as a methyl donor. SA...
متن کاملOsmotic stress induces expression of choline monooxygenase in sugar beet and amaranth.
Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolera...
متن کاملTemperature-dependent Expression of Betacyanin Synthesis in Amaranthus Seedlings.
Two phenomena related to temperature effects have been observed during the induction of betacyanin synthesis by a cytokinin (benzyladenine) in Amaranthus tricolor seedlings. One is a total inhibition of betacyanin accumulation at a temperature (39 C) at which seedling growth is unimpaired, and where there is still adequate uptake of benzyladenine. The other is the apparent induction of a higher...
متن کاملGenetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor.
Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controllin...
متن کاملEnhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase.
Choline (Cho) is the precursor of the osmoprotectant glycine betaine and is itself an essential nutrient for humans. Metabolic engineering of Cho biosynthesis in plants could therefore enhance both their resistance to osmotic stresses (drought and salinity) and their nutritional value. The key enzyme of the plant Cho-synthesis pathway is phosphoethanolamine N-methyltransferase, which catalyzes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 58 15-16 شماره
صفحات -
تاریخ انتشار 2007